skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nussenzveig_Lopes, Helena J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We prove the existence of solutions to the Kuramoto–Sivashinsky equation with low regularity data in function spaces based on the Wiener algebra and in pseudomeasure spaces. In any spatial dimension, we allow the data to have its antiderivative in the Wiener algebra. In one spatial dimension, we also allow data that are in a pseudomeasure space of negative order. In two spatial dimensions, we also allow data that are in a pseudomeasure space one derivative more regular than in the one-dimensional case. In the course of carrying out the existence arguments, we show a parabolic gain of regularity of the solutions as compared to the data. Subsequently, we show that the solutions are in fact analytic at any positive time in the interval of existence. 
    more » « less